Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael Bolte, ${ }^{\text {a }}$ Robin Panisch ${ }^{\text {b }}$ and Thomas Müller ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.070$
Data-to-parameter ratio $=20.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A cocrystal of diethylammonium chloride and diphenylamine

The title compound, diethylammonium chloride-diphenylamine (1/1), $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}$, consists of discrete diethylammonium cations, chloride anions and diphenylamine molecules linked together by several $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Comment

The silylation of diphenylamine with 2-chloro-2,6-dimethyl-2,6-disilaheptane in pentane in the presence of diethylamine was attempted. Light yellow crystals of the title compound, (I), were obtained from the crude product mixture.

Compound (I) consists of discrete diethylammonium cations, chloride anions and diphenylamine molecules. Each chloride anion forms three hydrogen bonds (Table 2). The dihedral angle between the two aromatic rings of the diphenylamine is $37.91(4)^{\circ}$.

Experimental

An equimolar mixture (9 mmol) of 2-chloro-2,6-dimethyl-2,6-disilaheptane, diphenylamine and diethylamine in 150 ml of pentane was heated to 309 K for 2 h . After filtration and removal of the solvent a yellow oil was obtained. Light yellow crystals of $\left(\mathrm{H}_{5} \mathrm{C}_{2}\right)_{2} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot\left(\mathrm{H}_{5} \mathrm{C}_{6}\right)_{2} \mathrm{NH}$ were obtained directly from the crude reaction product upon standing for 21 d .

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}$
$M_{r}=278.81$
Monoclinic, $P 2_{1} / n$
$a=9.067(6) \AA$
$b=10.0077(6) \AA$
$c=17.8386(13) \AA$
$\beta=94.726(6)^{\circ}$
$V=1613.33(19) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.148 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 19430 \\
& \quad \text { reflections } \\
& \theta=2.4-27.5^{\circ} \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Block, light yellow } \\
& 0.26 \times 0.24 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS II two-circle	3833 independent reflections
\quad diffractometer	3087 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.042$
Absorption correction: multi-scan	$\theta_{\max }=27.9^{\circ}$
\quad (MULABS; Spek, 1990; Blessing,	$h=-11 \rightarrow 11$
1995)	$k=-13 \rightarrow 13$
$\quad T_{\min }=0.955, T_{\max }=0.968$	$l=-23 \rightarrow 23$
27910 measured reflections	

Received 13 May 2003
Accepted 15 May 2003
Online 17 June 2003

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.070$
$S=0.97$
3833 reflections
184 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0466 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{C} 2-\mathrm{N} 3$	$1.4924(13)$	$\mathrm{N} 1-\mathrm{C} 21$	$1.3944(12)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.4919(14)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.3989(13)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2$	$113.79(8)$	$\mathrm{C} 21-\mathrm{N} 1-\mathrm{C} 11$	$129.96(8)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A $\cdots \mathrm{Cl} 1$	$0.908(15)$	$2.260(15)$	$3.1581(9)$	$170.0(12)$
N3-H3B $\cdots \mathrm{Cl} 1^{\text {ii }}$	$0.913(15)$	$2.218(15)$	$3.0946(9)$	$160.7(12)$
N1-H1 $\cdots \mathrm{Cl} 1$	$0.851(14)$	$2.467(14)$	$3.2909(9)$	$162.9(12)$

Symmetry code: (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.
H atoms bonded to C atoms were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ or $\left.1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right]$, using a riding model, with aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$, methylene $\mathrm{C}-\mathrm{H}$ $=0.99 \AA$ and methyl $\mathrm{C}-\mathrm{H}=0.98 \AA . \mathrm{H}$ atoms bonded to N atoms were refined independently with isotropic displacement parameters.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X - $A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine

Figure 1
Perspective view of the asymmetric unit, with the atom numbering; displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.]
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

